China OEM 2000kg Front End Telescopic Boom Construction Concrete Miller Attachments Quick Change Wheel Loader with Hot selling

Product Description

2000kg front end telescopic boom construction concrete miller attachments quick change wheel loader 

Product Description

 

STEEL CZPT M920 telescopic wheel loader is quite a multifunction machine, you can use it for various work, like farming, gardenning, landscaping, animal house, construction, bee keeping, minicipal work etc. 

Iis a new design to the market which besides the normal function of loaders, also have rear output and 3 point hitch for attachments to be used at the rear end, thus it can be used as both a loader or a tractor
 
Different with normal wheel loaders with torque converter, it adopts fully hydrostatic system, 4 hydraulic wheel motors driving the loader, smooth and vraible speed change 

Tipping cabin, it gives full access for the complete inside parts which is very convenient.

Telescopic boom increase its working scope than normal loaders.

Boom floating function, better handling the work on terrain ground.

Hydraulic and electric output offer multiple powers to the attachments

Hydraulic quick hitch plus more than 40 different attachments, offer a solution for all your work needs.

Product Parameters

Model M920 mini wheel loader 
Dimension with cabin (LxWxH) 3600X1500X2300mm
Max. lifting height (boom retract)  2996mm
Max. lifting height (boom extend)  3746mm
Bucket capacity 1 cbm
Max. loading capacity 2000kg
Min. turning radius 2800mm
Turning angle 450
Min. ground clearance  330mm
Speed 0-12~24 km/h
Weight with bucket  2640 kg
Standard tire 31X15.5-15
Tire pressure 2.8 bar
Oil tank capacity 80L
Pressure 200bar
Working oil flow 50L/minx2
Tracking oil flow 120L/min
Oil model(mineral oil) L-HL46
Fuel tank capacity 52L
Battery 60Ah, 12V
Engine Kohler/Yanmar, 74hp, 4 cylinder, diesel 
Standard configuration: Closed cabin with heating and fan, hydraulic quick coupling, telescopic boom, boom floating, self levering, flexible articulation, standard bucket
Options 
Open ROPS canopy 3 point hitch with hydraulic pto
Normal boom without telescopic  Trailer hook
Rear hydraulic output with separate control Bobcat coupling plate
3 point hitch  Multi-way couipler
Air conditioner  

 

Detailed Photos

Telescopic Boom

Max. reach 3746mm;

Boom flaoting;

Self levering;

Hydraulic quick hitch;

Hydraulic + Electrical output.
Control System

Multifunction joystick control;

Standard heating system;

Optional air conditioner;

Forward/Reverse foot pedal;

Hand accelerator
Driving & Working System

Tipping cabin for easy maintenence;

Piston pump+4 hydraulic motor for transmission;

Variable speed;

Twin pump for working system

Our Advantages

Loader+Tractor, 1 Multi-purpose Machine for all your work
 
Front part is loader, with telescopic boom, hydraulic output, quick hitch and coupling system for various attachments, like bucket, fork, grapple, auger, hammer, lawn mower, etc.
 
 
Rear part is tractor, with hydraulic output and 3-point hitch, for rotary tiller, trailer, etc.
 
STEEL CZPT series wheel loaders are widely used in farming, agriculture, landscaping, gardening, construction, municiple, etc. Along with the loader, we offer a wide range of attachments, a quick idea for you as below

Packaging & Shipping

Thanks to the compact design of STEEL CZPT M910 mini telescopic loader, it can be driven into container directly and fully assembled.

Loading condition:1 set/20ft GP; 3 sets/40ft GP

Company Profile

Direct Manufacturer, 100% guarantee!!
 
We are direct manufacture factory, every aspect in a deal that customer concerns is guaranteed, like price, quality, delivery time and after service.
 
We devoted to offering 1 stop shopping and solution to customers' needs. The products we currently offer covering loaders, telehandlers, excatators and loader attachments. Besides we have our own engineering team, can make customized design/product.  
 
"Honest" is our business way. We appreciate customers' trust, and we are always CZPT as return.
 
We choose "STEEL CAMEL" as our brandname, as all our products were designed for heavy duty work, trouble less and more service, like the what the CZPT do for people.

Till now STEEL CZPT products, telehandlers, wheel loaders, excavators, attachments etc. have been servicing customers in many countries, like Germany, Russia, Poland, UK, Argentina, Australia, USA, Canada, Indonisia, Spain......

With more than 10 years' experience of production and exporting, I'm ready to be your reliable consultant about products and importing procedure anytime. 

Send an inquiry, leave your questions, I will take care of all the rest matters, Anna~

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline's outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling's specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling's radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines' performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft's splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling's root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China OEM 2000kg Front End Telescopic Boom Construction Concrete Miller Attachments Quick Change Wheel Loader     with Hot sellingChina OEM 2000kg Front End Telescopic Boom Construction Concrete Miller Attachments Quick Change Wheel Loader     with Hot selling